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Abstract—Resistive strain and bending sensors offer a
versatile platform for sensing various physical parame-
ters with relatively little effort and budget. The lightweight,
robust and compact sensors are extensively used in man-
ifold low-power applications. Recently, scribed and flexible
laser-induced graphene sensors have shown potent capabili-
ties for a variety of measurements, including flow, deflection,
and force. Achieving a high sensitivity to various stimuli
remains a challenge due to limited change in relative resis-
tance. In this paper, we report a multifunctional LIG sensor
with widely tunable properties and significantly enhanced
electromechanical performance. A method of repeated laser
writing is used to increase the porosity, the uniform carboniza-

tion degree and, most importantly, the sensitivity of the LIG sensors. A gauge factor of 91.2 is achieved after three-times
laser writing at low power, which is an increase of 750% to one-time laser writing and 720% higher than the ones previously
reported for LIG strain sensors. The increase is attributed to a more porous surface morphology that provides more

overlapping area and displacement of the graphene layers.

A homogeneous bidirectional response was obtained by

scribing the electrodes on both faces of the substrate. Parylene C-coating is used to protect the LIG sensors from
environmental effects. Coated sensors were packaged to a PCB assembly for easy integration into various applications.
An exampleis a LIG bending sensor customized for velocity profile monitoring of Unmanned Aerial Vehicles in the outdoor

environment.

Index Terms— Flexible, graphene, sensors, strain, unmanned aerial vehicles, velocity.

I. INTRODUCTION
HE potential and versatility of bending sensors made
of porous graphene were recently demonstrated for an
extensive range of configurations, including measurements of
force, curvature, and speed [1]-[5]. The deflection caused by a
wide range of forces and speeds was effectively sensed through
a resistance measurement, exploiting the piezoresistance of
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the scribed graphene films [2], [3]. The graphene electrodes
were realized using flexible and lightweight polyimide (PI)
films and a simple laser scribing process, creating what is
known as Laser-Induced Graphene (LIG) [6]. This facile
fabrication process is a combination of large-area graphene
growth and patterning in one step, without using any high-cost
cleanroom facilities, wet chemical processes, and consecu-
tive treatments [5]. Besides these advantages, LIG is also
corrosion-resistant [7]-[9] and can operate at high temper-
atures of up to 580° [5], [10]. Thus, LIG has shown its
suitability to be utilized in several physical domains. The
mechanical flexibility of LIG bending sensors paved the way
for low-cost electromechanical measurement systems, such as
body movements tracking [1], [4], [11]-[13], marine animals
speed monitoring [2], and sensing the surface current velocity
of the sea [2]. Meanwhile, LIG heaters based on the Joule
effect were used in broad applications ranging from self-
sterilizing filters [10] to gas sensors [14], [15]. For example,
thermally actuated LIG films were unlisted to capture and
kill bacteria, and molecules that may cause negative reac-
tion and/or illness [10]. Self-heated gas sensors obtained by
dispersing nanomaterials with different selectivity on porous
LIG surface were used for deconvolution of various gaseous
components in the mixture [14]. The exploitation of LIG in the
microwave, radio wave [16] and terahertz regimes [17] and in
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solar-to-thermal [18] conversion applications has been reported
as well. Recently, Zhu et al., demonstrated the possibil-
ity to progress from individual LIG devices to all-LIG
integrated systems by combining wireless transmission,
energy harvesting modules and stretchable sensors into
a single platform [15]. Due to the coupled mechanics-
electromagnetic design, the wideband dipole antenna showed
deformation-independent radiation properties to be used in
self-powered systems, remote monitoring of the environment,
and clean energy applications [15]. Although the sensitivity
and dynamic range of the sensors could be tuned via the sensor
geometry, the overall resistance variation was limited to a max-
imum of 10% and a gauge factor of ~11 [5]. A larger change
in the value of resistance for a small change in strain would
allow more accurate and subtle detection of deflection, force,
and curvature, which is crucial in many automotive, industrial,
and medical applications. The electromechanical performance
of LIG has previously been enhanced by increasing the laser
power within a certain range [6], [19], [20] or by transferring
the LIG pattern to an elastomeric substrate, such as poly-
dimethylsiloxane [11], [12], [21], silicon rubber [22], [23],
or polystyrene [13], [24]. The former often causes graphene
detachment from the substrate or thermal damage, resulting in
quick performance degradation and unreliable measurements.
The latter involves multi-step fabrication processes, which
is neither an efficient nor cost-effective way of producing
high-volume end products. Moreover, the labor involved in
transferring LIG to other substrates slows down the fabrication
process compared to fully automated methods.

In this manuscript, we report a fast, scalable fabrication
of multifunctional LIG bending sensors with widely tunable
properties and significantly enhanced electromechanical per-
formance. We study the effects of repeated laser writing,
which resulted in the increase of porosity, while reducing
intrinsic structural defects. The sensor design is also cus-
tomized to achieve a homogeneous bidirectional response.
To easily integrate the LIG sensor into various applications,
an expandable, plug-and-play sensor module was developed
and utilized in velocity profile monitoring of Unmanned Aerial
Vehicles (UAV).

Velocity updates of UAVs greatly enhance the navigation
process, as the horizontal velocity is coupled with their roll and
pitch angles [25]. The key component to evaluate the position
and velocity of the drone is the Inertial Measurement Unit
(IMU), assembled from accelerometers, gyroscopes, and mag-
netometers [26]. Typically, the IMU alone provides a reliable
state estimation solution, but the error will accumulate over
time due to the mathematical integration of signals [27]-[29].
Particularly, IMUs that are built using MEMs techniques
inevitably include time-varying bias, cross-coupling errors,
random noise, resulting in error accumulation and signal drift-
ing [30]-[32]. To overcome this issue, the global navigation
satellite systems (GNSS), which provide absolute position and
velocity updates, have been utilized [33]. However, the GNSS
support is not always available or reliable in confined areas,
such as cities, forests, urban and indoor environments [34].
To obtain a long-term accurate navigation solution, at least
one type of absolute update is required. Therefore, various

navigation assistance methods were attempted based on
technologies such as cameras, Light Detection and Rang-
ing (LIDAR) [35], and Radio Detection and Ranging
(RADAR) [36]. These techniques suffer from either being
unable to operate in dark and featureless areas, high price,
heavyweight, high power consumption, and high computa-
tional power. In this study, we use a LIG bending sensor
to provide absolute velocity updates of UAVs in a real-life
environment.

Il. METHODS

A. Fabrication and Operation Principle

The sensors were realized by direct and repeated laser
scribing on a polyimide (PI) substrate of 127 ym (DuPont,
Kapton #IM301449) utilizing pulses from a CO; laser (ULS,
PLS6.75) in ambient conditions, as illustrated in Fig. 1a. The
PI surface was cleaned with ethanol and transformed to a
3D porous graphene film via a laser photothermal process
associated with rapid decomposition of gaseous products,
the conversion of the available sp? bonds to sp? bonds, and
an increase in electrical conductivity [37]-[39]. The following
laser parameters were utilized for each iteration of repeated
laser writing: 3.5 W power, 2.9 cm/s speed, 1000 pulses per
inch (PPI), and 6 mm working distance. The samples with
a maximum of 5 iterations of repeated laser writing were
scribed. The versatile fabrication process allowed fabricating a
double-sided LIG electrode with optimized geometry and size,
as shown in Fig. 1b. Both electrodes were short in length
(1 = 5 mm) and structured in a meander shape (number
of turns = 9) to achieve a large variation in resistance
with the smallest electrode width (~60 xm). The working
mechanism of bending LIG sensors has already been described
in detail elsewhere [2]. In brief, the bending sensor uses porous
graphene on a pliable PI substrate to transduce a signal through
cantilever deflection, which is anchored at only one end.
When a sensor is exposed to external forces, such as airflow,
cantilever bending stimulates a fractional resistance variation.
The LIG sensors scribed on both sides of the PI substrate can
be effectively utilized for a difference measurement, which
subtracts outputs of the sensor generated in compression and
tension states.

B. Characterization Techniques

The confocal Raman spectroscopy (Alpha 300 Apron,
Witec), Scanning Electron Microscopy (SEM, Nova Nano
630 Systems), X-ray photoelectron spectroscopy (XPS, ESCA
3400, Amicus Kratos Analytical), and X-ray diffraction (XRD,
D2 Phaser, Bruker) were utilized to investigate the degree of
graphitization and defect formation for various LIG samples
after each laser writing stage. Fig. 2a shows Raman spectra
obtained with an excitation laser source of 532 nm under
5 mW power. Three distinct peaks at around 1360 cm—1
(D-band), 1584 cm—1 (G-band), and 2730 cm—1 (2D-band)
can be identified even after four times repeated lasing, which
is indicative of LIG formation [40]-[42]. Since the G-band
corresponds to the stretching vibration of the sp2 carbon lattice
and the D-band to the defects and disorder, the ratio of their

Authorized licensed use limited to: KAUST. Downloaded on September 07,2023 at 16:41:19 UTC from IEEE Xplore. Restrictions apply.



18564

IEEE SENSORS JOURNAL, VOL. 21, NO. 17, SEPTEMBER 1, 2021

a) b)
Side 1 Side 2 P
CO, laser T yous M uG
Laser-Induced ‘ ‘
Graphene (LIG) ‘
........ E £
- £
2 8
g |
£
Polyimide o [
v : ! e ‘
o gmm ‘ 18 mm ‘
g Electrode 1 Electrode 2

Fig. 1. a) Schematic of the fabrication process of LIG sensors; b) Design of double-sided LIG bending sensor.

intensity (ID/IG) is commonly used to quantify the amount of
defects in the graphitic materials [43]. In our case, the ratio
ID/IG decreases from 0.79 to 0.26 after three-time repeated
laser writing, indicating reduced structural defects, lower edge
densities, and higher quality of the obtained graphene. These
results are further verified by SEM images, which show
more polyporous and looser surface morphologies obtained
after three repeated laser scribing steps (Fig. 2b). The higher
porosity observed suggests more air and less LIG in the same
volume. Indeed, the weight of the LIG sample decreased by
35% after three laser writings (Table SI). The consecutive laser
writing (four and five-times), however, introduces damages
to the LIG structure and non-uniform graphene distribution
across the PI thickness (Fig. 2c), which is consistent with
an increased intensity of the D- band in the Raman spectra.
Meanwhile, the 2D band is responsive to the order of the
graphene stacks along the c-axis, and the ratio I2D/IG is less
than 1 for all repeated laser writing samples, which implies
the existence of multilayered graphene [44]. Using Raman
spectroscopy results and Equation 1 [6], the crystalline size
of LIG, La, can also be estimated:

I -1
L, = (2.4 x 10—10) x (TD) x A4,
G

where /; is the wavelength of the Raman laser (4] = 514 nm).
The L, values reach ~60 nm after three laser writing steps
(Fig. 3a). A further increase in the number of laser writing
steps degrades the quality of the LIG with a L; of 21 nm,
which is attributed to the broken LIG bonds and partial
oxidation of LIG in the air. XPS was used to examine the
elemental composition of the LIG after each repeated laser
writing step. XPS spectra of samples showed the signature of
the major elements carbon (from the aryl group) and oxygen
(from the ketone and ether bonds) only, as shown in Fig. S1.
The C/O ratio has increased by ~37% after three laser writing

ey

steps, indicated an increased amount of carbon and decreased
oxygen elements. Fig.3c and d show a high-resolution
C-1s peak of the XPS spectrum and an XRD pattern for LIG
after three times of laser writing, respectively. Deconvoluted
C-1s peak shows a prominent C-C (284.8 eV) peak with
considerably reduced C-O (2854 eV), C = O (286.2 eV)
peaks, suggesting the predominance of sp2 carbons agreeing
well with Raman spectra results [45]. Meanwhile, XRD of
powdered LIG shows a peak centered at 260 = 26.02°, and
20 = 42.9°, both of each correspond to previously reported
LIG [6], [46]. The interlayer spacing of 0.342 nm between
(002) planes is derived using Bragg’s equation (see Supporting
Information), suggesting a high degree of graphitization [6].

I1l. RESULTS
A. Electromechanical Performance
The effect of multiple laser writing on the electromechanical
parameters of the LIG has been evaluated by scribing the LIG
sensor in the shape of a strip with a length of 20 mm while
maintaining the same lasing power and speed as described in
Section 2.1. The width and thickness of LIG increased by
12% and 33%, respectively, after three times laser writing
(Table S1). This increase in cross-section area could mean
less electrical resistance for the same piece of LIG. However,
the increased resistance and resistivity observed after each
lasing step suggests the dominance of the effect of increased
porosity [47]-[49]. A typical measure utilized to characterize
the electromechanical performance of strain sensors is the
Gauge factor (GF),

_dR/R _dp/p
odljl
where Al/l is the strain, R is the resistance without any

strain, p is the electrical resistivity, and v is the Poisson
ratio (Vkapton = 0.34). The LIG electrode in the form of a

+1+2v 2)
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structures after each laser irradiation step.

strip with a length of 20 mm and a width of 1 mm was
firmly positioned in the sample holder of an electromechanical
tensile testing machine (5900-Series, Instron.) to apply strain
(inset of Fig. 4). A DC current of 1 mA was applied to
the LIG strain gauge to detect the variation of the electrical
resistance during the tensile test via Keithley 2400 sourcemeter
controlled with LabView software in a two probe setup. Fig. 4
shows a linear relationship between strain and relative change
in resistance for all LIG samples, which is attributed to
a narrowed and elongated conductive porous structure. The
highest GF ~91.2 (Young modulus =~ 2.2 GPa, Yield Strength
~80 MPa) was achieved with LIG scribed by using three
times laser writing, which is ~720% higher than previously
reported LIG strain gauges (Fig.S2). The increased GF is
attributed to more polyporous and looser surface morphologies

a) Raman spectrum of LIG for five consecutive laser irradiations. b) Top-view and c) cross-sectional SEM images of porous graphene

that provide for more displacement and the overlapping
area of the graphene layers. A positive piezoresistivity was
determined by an intrinsic contribution to the piezoresistivity
((dp/p)/dl/l = 89.52).

B. Force, Deflection, and Airflow Detection

The following experiments were carried out with the LIG
sensor realized using three times laser writing. The electro-
mechanical tensile testing machine was also utilized to provide
deflection in both bending directions, as shown in the insets
of Fig. 5a. As expected, the resistance changes linearly with
external force and deflection during sensor extension (LIG
on the convex side). The electrical resistance of the LIG
sensor scribed three times rises at the rate of 557 Q/mN
and 358 Q/mm in ambient conditions (Fig. 5a). Meanwhile,
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Fig. 4. The induced strain as a function of resistance change of LIG at
different laser stages.

the LIG bending sensor exhibits reducing resistance during
compression (LIG on the concave side), decreasing at the rate
of —554 Q/mN, —356 Q/mm. In comparison to the sensor
that is laser scribed once (38 Q/mN, 24 Q/mm), the sensor
that was laser scribed three times showed ~15 times higher

sensitivities in both directions. It was found that the resistance
of LIG electrodes reduces by 4% over a temperature range of
20-60 °C [5], [50], [51]. Full temperature compensation was
recently obtained by scribing the LIG patterns on both faces
of the substrate and utilizing a difference measurement [2].
In this study, the double-sided sensor configuration also
provided an increased sensor sensitivity of 1108 Q/mN and
712 Q/mm with zero output voltage under no-load con-
dition (Fig. 5b), as well as a rejection of common input
signals, such as temperature. To examine the output of a
LIG bending sensor to various airflow speeds, a setup was
built wherein an air streaming in the tube induced sensor
bending towards the direction of airflow (Fig. 6a). The airflow
was quantified by bending induced from the drag associated
with the airflow. The flow tube was constructed from obscure
polyvinyl-chloride with a length of 0.25 m and a diameter
of 50 mm. An adjustable-speed electric fan with a brushless
DC motor (KV 2600, Dynam RC Planes) was used for the
regulation of the flow up to 12 m/s. The motor was connected
to an electronic speed control driven by signals from the
microcontroller (Atmega328, Microchip Inc.) and powered by
a Switch Mode Power Supply (S1000-12, Festnight Inc.) A
forward-curved fan, which is well suitable for the movement
of large volumes of air against comparatively low pressures,
was fitted into the pipe, as shown in the inset of Fig. 6a.
The bending curvatures of the LIG sensor induced by various
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scribed on one side of the PI, in extension and compression states.

speeds of airflow are shown in the inset of Fig. 6b. The
sensor showed a linear response within the speed range of
2-10 m/ with a sensitivity of 210 Q/(m/s) for both extension
and compression states. It should be noted that the sensor
output varies depending on the length and cross-sectional area
of the sensor substrate as well as the length of the piezoresistor.
Depending on the application, the sensitivity can be increased
using shorter piezoresistive electrodes (Lpr < 5 mm), thinner
or wider substrates and decreased by the opposite measures(in
case of the length see Fig.S3).

IV. UAV VELOCITY MONITORING

The LIG bending sensor proved as a valuable instrument
when combined with a ready-to-attach PCB assembly for
easy integration into various applications. In order to mon-
itor the speed and flying direction of an in-house made
UAV/quadcopter drone, LIG electrodes were scribed three
consecutive times on PI with the geometry described in
Section 2.1. A Parylene-C coating of ~1 um in thickness
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5F| o Compression 3 =
?
- 2 ]
g 3
3
. @ |
K 3
Xal 2 o
?
§
1+ 3 3 -
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a) Schematic of the flow test setup. The inset shows the speed-adjustable electric fan; b) Resistance measurements of LIG electrodes

was applied to the surface of porous graphene to protect it
from adverse environmental impacts, such as rain. As seen
in the inset of Fig.7a, the scribed circuit board features vias
for stable and reliable electrical connection to the sensor and
an operational amplifier (LM 324, ON Semiconductor, Inc.)
for signal conditioning. Fig. 7a shows a photograph of the
deployed quadcopter system and LIG sensor module attached
to the front side of its frame (F450, DJI) using double-sided
mounting tape (FK-M241, Fantastick). The drone flight con-
troller included preinstalled open-source autopilot firmware
(4Mini, Pixhawk 4 Inc.). The companion single-board com-
puter (XU4, Odroid Inc.) was connected to the flight con-
troller using a serial connection. The package installed on
the companion computer provided a driver for the autopilot
with a communication protocol. The package published all
estimated data into objects known as topics for unidirectional,
streaming communication, which could be easily accessed and
recorded with timestamps. The autopilot firmware provided
linear and angular velocities, which were recorded in real-
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time for a duration of 3.5 min.

time using the Robot Operating System (ROS) tool into a file
container. During the experiment, the UAV was controlled by
the human in the Position Mode, which means that the UAV
could actively brake level while being locked to a 3D spatial
position. The signals of the LIG sensor were recorded during
drone flying sessions in an outdoor environment (Fig. 7b) and
calibrated to flying speeds through characterization obtained
from Fig. 6b. Different maneuvers, such as flying forward,
backward, hovering, and flying sideways, were carried out by
the drone in 3.5 minutes. As it can be seen in Fig.7c, these
maneuvers were explicitly reflected in the sensor and IMU
responses with the highest speed of ~10 m/s. To compare the
sensor data with the signal provided by the IMU, both signals
were sampled equidistantly and synchronously (Fig. 7c). The
comparison was made through commonly used correlation,
and root mean squared error (RMSE) analysis. The obtained
Pearson coefficient of r = 0.91 indicates a strong positive
correlation between the two signals. Meanwhile, a large
root mean squared error (RMSE) of 3.61 m/s is attributed
to the integration of the accumulated errors over time by
the IMU system, as well as random vibrations of the LIG
sensor due to orthogonal turbulent flows generated by UAV
propellers. The effect of the latter could be considerably
minimized using low-cost wind shielding at two sides of the
Sensor.

V. CONCLUSION

Enhanced properties of LIG sensors can open new per-
spectives for high-performance bending sensors capable of
measuring flow, deflection, or force. A method of repeated
laser writing was utilized to increase the porosity and uniform
carbonization degree of LIG. Employing three times consecu-
tive laser writing, several advantages arose. First, a decreased
ID/IG ratio (by 67%) indicated a reduction of structural defects
and lower edge densities. Second, more polyporous and looser
surface morphologies of LIG and reduced weight (by 35%)
were obtained, which provided more displacement and the
overlapping area of the graphene layers. This allowed us to
achieve a maximum GF of 91.2 with a piezoresistive coeffi-
cient of 89.5, which is 720% times higher than that of previ-
ously reported LIG strain sensors. Third, increased crystalline
size of the porous graphene (~60 nm) was obtained, which is
two times higher than the one of the originally reported LIG
by Lin et al. These results were verified via the elemental
composition of LIG, which showed an increase of the C/O
ratio by 37%. Meanwhile, the interlayer spacing of 0.342 nm
between (002) planes, derived via Bragg’s equation, suggested
a high degree of graphitization. A homogeneous bidirectional
response was obtained by scribing the electrodes on both faces
of the substrate. Parylene-C coated LIG sensors were packaged
to a ready-to-attach PCB assembly for easy integration into
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various applications. To this end, a LIG bending sensor was
tested on a drone in an outdoor environment and performed
very well as a cost-effective solution to provide absolute
velocity up-dates.
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